North Penn School District

Elementary Math Parent Letter

Grade 4

Unit 5 - Chapter 11: Angles

Examples for each lesson:

Lesson 11.1

Angles and Fractional Parts of a Circle

Find how many $\frac{1}{6}$ turns make a complete circle.
Materials: fraction circles
Step 1 Place a $\frac{1}{6}$ piece so the tip of the fraction piece is on the center of the circle.
Trace the fraction piece by drawing along the dashed lines in the circle.

Step 2 Shade and label the angle formed by the $\frac{1}{6}$ piece.
Step 3 Place the $\frac{1}{6}$ piece on the shaded angle.

Turn it clockwise (in the direction that the
hands on a clock move). Turn the fraction piece to line up directly beside the shaded section.

Step 4 Trace the fraction piece. Shade and label it. You have traced $\underline{2}$ sixths in all.

Step 5 Repeat until you have shaded the entire circle.
There are $\underline{\mathrm{SiX}}$ angles that come together in the center of the circle.
So, you need $\frac{\text { SiX }}{6} \frac{1}{6}$ turns to make a circle.

Lesson 11.2

Degrees

Angles are measured in units called degrees. The symbol for degrees is ${ }^{\circ}$. If a circle is divided into 360 equal parts, then an angle that turns through 1 part of the 360 measures 1°.
An angle that turns through $\frac{50}{360}$ of a circle measures 50°.
Find the measure of an angle that turns through $\frac{1}{6}$ of a circle.

Step 1 Find a fraction that is equivalent to $\frac{1}{6}$ with 360 in the denominator. Think: $6 \times 60=360$.
$\frac{1}{6}=\frac{1 \times 60}{6 \times 60}=\frac{60}{360}$
Step 2 Look at the numerator of $\frac{60}{360}$.
The numerator tells how many degrees are in $\frac{1}{6}$ of a circle.

So, an angle that turns through $\frac{1}{6}$ of a circle measures 60°.

Lesson 11.3

Measure and Draw Angles

A protractor is a tool for measuring the size of an angle.
Follow the steps below to measure $\angle A B C$.
Step 1 Place the center point of the protractor on vertex B of the angle.

Step 2 Align the 0° mark on the protractor with ray $B C$. Note that the 0° mark is on the outer scale or top scale.

Step 3 Find where ray $B A$ intersects the same scale.

Step 4 Read the angle measure on the scale.

The $\mathrm{m} \angle A B C=30^{\circ}$.

Lesson 11.4

Join and Separate Angles

The measure of an angle equals the sum of the measures of its parts.
Use your protractor and the angles at the right.
Step 1 Measure $\angle A B C$ and $\angle C B D$. Record the measures.
$\mathrm{m} \angle A B C=\underline{35^{\circ}} ; \mathrm{m} \angle C B D=\underline{40^{\circ}}$
Step 2 Find the sum of the measures.

$$
\underline{35^{\circ}}+\underline{40^{\circ}}=75^{\circ}
$$

Step 3 Measure $\angle A B D$. Record the measure.

$$
\mathrm{m} \angle A B D=75^{\circ}
$$

So, $\mathrm{m} \angle A B C+\mathrm{m} \angle C B D=\mathrm{m} \angle A B D$.

Lesson 11.5

Problem Solving • Unknown Angle Measures

Use the strategy draw a diagram.
Mrs. Allen is cutting a piece of wood for a set for the school play. She needs a piece of wood with a 60° angle. After the cut, what is the angle measure of the part left over?

Read the Problem		
What do I need to find? I need to find the angle measure of the part left over, or $\mathrm{m} \angle P N R$	What information do I need to use? I can use the angle measures I know: $\mathrm{m} \angle M N P=60^{\circ}$ and $\mathrm{m} \angle M N R=110^{\circ}$	How will I use the information? I can draw a bar model to find the unknown angle measure, or $\mathrm{m} \angle P N R$
Solve the Problem		
I can draw a bar model to Then I can write an equa $\begin{gathered} \mathrm{m} \angle M N P+\mathrm{m} \angle P N R=\mathrm{m} \\ \underline{60^{\circ}}+x=\underline{110^{\circ}} \\ x=\underline{110^{\circ}}- \end{gathered}$ $\text { So, } \mathrm{m} \angle P N R=\underline{50^{\circ}}$ The angle measure of the	present the problem. to solve the problem NR \square 0°, or \qquad 50° left over is \qquad 50°	$\frac{x}{}$

Vocabulary

Clockwise - in the same direction in which the hands of a clock move
Counterclockwise - in the opposite direction in which the hands of a clock move
Degree $\left({ }^{\circ}\right)$ - the unit used for measuring angles
Protractor - a tool used for measuring the size of an angle
Acute angle - an angle that measure greater than 0° and less than 90°
Obtuse angle - an angle that measures greater than 90° and less than 180°
Ray - a part of a line; it has one endpoint and continues without end in one direction
Right angle - an angle that forms a square corner and has a measure of 90°
Vertex - the point at which two rays on an angle meet or two (or more) line segments meet in a two-dimensional shape

